SESAME

Synchrotron-light for Experimental Sciences and Applications in the Middle East

SESAME: Status and Perspectives

Giorgio Paolucci Scientific Director - SESAME

1

Location of SESAME

SESAME location in Allan, Jordan

Location of SESAME

SESAME location in Allan, Jordan

SESAME Members & Observers

Members: Cyprus, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey.

Observers:

Brazil, Canada, China (People's Republic of), the European Union, France, Germany, Greece, Italy, Japan, Kuwait, Portugal, Russian Federation, Spain, Sweden, Switzerland, the United Kingdom, the United States of America.

Objectives:

•Foster excellence in science and technology in the Middle East.

•Reverse brain drain in the region.

•Enhance regional science and technology infrastructure.

•Contribute to improved understanding among peoples of diverse backgrounds through peaceful scientific cooperation.

"Day-One" Beamlines

No	Beamline	Energy Range	Source Type	Comments	
1	XAFS/XRF	4.5-30 keV	Bending Magnet	 Helmholtz-Zentrum Dresden- Rossendorf/ESRF New focussing optics New Hutch Novel Detector 	
2	IR (Infrared Spectromicroscopy)	0.001-3 eV	Bending Magnet	 New beamline Mod to storage vacuum chamber 	
3	MS (Materials Science)	5-25 keV	2.1 Tesla MPW (SLS)	 SLS XO4SA New Hutch Donated Dectris Detector 	
4	Macromolecular Crystallography (MX)	~4-~13 keV	IVU	 New Beamline Partial support by the Jordanian Scientific Research Support Fund 	

New projects

No	Beamline	Energy Range	Source Type	Comments	
5	BEATS (BEAmline for Tomography at SESAME)	~4.5 - ~30 keV	Super Bend or Three pole wavelength shifter	 EU funded (~6 M€ total, ~3.6M€ for SESAME) 	
6	HESEB (HElmhotz- SEsame Beamline)	~70 - ~1800eV	EPU	 Supported by the Helmholtz Gemeinschaft + Possible User Consortium New beamline Refurbished EPU from HZB 	

2018: SESAME Started Users' Operation

	2018 SESAME beam-time Schedule												
Ja	nuary	February	March	April	May	June	July	August	September	October	November	December	
date	MLNW	date M L N I	W date M L N	W date M L I	N W date M L	N W date M L N	W date M L N	W date M L N	W date M L N	W date M L N	W date M L N	W date M L N	w
S M 1 T 2 W 3 T 4		1	1		13 1 2 3	18	1 2 3 4 5	27 1 2		1234	40		S M T W T
F 5		2	2		4	12	6	3	1	5	2		F
S 7 M 8 T 9 W 10 T 11		4 5 2 6 7 8	4 5 6 7 8	1 2 10 3 4 5	6 7 14 8 9 10	3 4 19 5 6 7	8 9 23 10 11 12	5 6 28 7 8 9	2 3 32 4 5 6	7 8 36 9 10 11	4 5 41 6 7 8	2 3 45 4 5 6	5 M 49 T W T
F 12 S 13		9 10	9	6	11	8	13	10	8	12	9	7	F
S 14 M 15 T 16 W 17 T 18		11 12 3 13 14 15	11 12 7 13 14 15	8 9 11 10 11 12	13 14 15 15 16 17	10 11 20 12 13 14	15 16 24 17 18 19	12 13 29 14 15 16	9 10 33 11 12 13	14 15 37 16 17 18	11 12 42 13 14 15	9 10 45 11 12 13	S0 T W T
F 19		16	16	13	18	15	20	17	14	19	16	14	F
S 21 M 22 T 23 W 24 T 25		18 19 4 20 21 22	18 19 20 21 22	14 15 16 12 17 18 19	20 21 16 22 23 24	17 18 21 19 20 21	22 23 25 24 25 26	19 20 30 21 22 23	16 17 34 18 19 20	20 21 22 23 23 24 25	18 19 43 20 21 22	16 17 47 18 19 20	S M Sf T W T
F 20 S 27		23	23	20	25	23	28	24	21	20	23	21	F
S 28 M 29 T 30 W 31 T		25 26 5 27 28	25 26 27 28 29 30	22 23 13 24 25 26 27	27 28 17 29 30 31	24 25 26 27 28 29	29 30 25 31	26 27 31 28 29 30 31	23 24 35 25 26 27 28	28 29 30 31	25 26 44 27 28 29 30	23 24 48 25 26 27 28	S M S2 T W T F
S S M			31	28 29 30		30			29 30			29 30 31	S M

Since April 6 runs – 2088 h - 87 days (20 MDs/67 operation) – projec. 3000 h/year Beamline commissioning until June 2018

First users in week 29 – 17th July 2018 – until now a total of 164 (94+70) users shitfs

Two fills per day

... or maybe one in the next future

XAFS/XRF

Hosting users since July 2018

XAFS/XRF

First monochromatic beam on November 22, 2017

D08-ES-SDD1:mca1.VAL -D08-ES-SDD1:mca1.BG

Exploration of diagenetic versus biogenic uptake of metal elements in ancient Cyprus and the surrounding region

<u>Cyprus</u>

Dr. Kirsi Lorentz with her team at the XAFS/XRF control room

EXAFS

Influence of Boron Substitution on the electronic structure of LiMn1-xBxO2 Battery Cathode

Murat O. Ozkendir's team

Influence of Boron Substitution on the electronic structure of LiMn1-xBxO2 Battery Cathode

Turkey

Murat O. Ozkendir's team

Boron Activity in Li2MnO3 Cathode Materials¶

Exceptionally active and stable catalysts for CO2 reforming of glycerol to syngas

<u>Turkey</u>

Emrah Ozensoy's group

Exceptionally active and stable catalysts for CO2 reforming of glycerol to syngas

S. Bac, Z. Say, Y. Kocak, K. E. Ercan, M. Harfouche, E. Ozensoy, A. K. Avci, *Applied Catalysis B:*

<u>Turkey</u>

Emrah Ozensoy's group

XAFS measurements of Cr V, and As within the various mixtures of oil shale ash solidifying additives

<u>Jordan</u>

Visit of **JAEC's Commissioner** & Chairman of the Jordanian National Committee of SESAME (**JNC**)

Ligand	N (atom)	R (Å)	σ² (Ų)	∆ E (eV)
Cr-C	6.0	2.03	0.0002	
Cr-Cr	0.7	2.72	0.003	4
Cr-Cr	4.1	3.70	0.008	
Cr-C	4.2	3.9	0.008	

Probing the Local and Electronic Structure of Cobalt Ferrite Nanoparticles

Pakistan

Dr. Shafqat and Dr. Maaz at the experimental station changing samples

Experimental EXAFS function and their Fourier Transform Measured at Co K-edge

Experimental EXAFS function and their Fourier Transform Measured at Fe K-edge

Other Official Users (XAFS/XRF)

XAFS/XRF Beamline New Fluorescence detector

- 1. Front-end PCBs
- 2. Conditioning PCBs
- 3. Brass profile with cooling liquid flowing inside
- 4. Insertion guides at flanks of detecting heads
- 5. Rails for eight detection heads
- 6. Power supply and filters
- 7. Back-end PCBs
- 8. Inlet cooling distribution
- 9. Outlet cooling distribution
- 10. Ethernet PCBs
- 11. Power supply connectors

Courtesy of Daniela Cirrincione

Recent tests at Elettra confirmed the expected performance of the INFN SDD. The instrument will be installed at SESAME in May-June 2019

Position of detectors on XAFS beamline @ELETTRA

Detector in parasitic position

Courtesy of Daniela Cirrincione

Detector in normal position

XAFS/XRF proposals evaluation First external users in July 2018

Country	Submitted	Selected
CYPRUS	1	1
EGYPT	6	2
IRAN, ISLAMIC REPUBLIC OF	2	0
ITALY	1	0
JORDAN	2	1
KENYA	2	0
PAKISTAN	7	4
SWEDEN	1	0
TURKEY	14	11
TOTAL	36	19

Step by Step Assistance to Users

- Most of the Users are new to the XAFS techniques
- Users Need Assistance in all the Experimental Process

Making plans & collecting good data

Analyzing data

Preparing Samples

Collect less data but good

Collect many and useless

Hosting users since November 2018

Top view of Stage I

POLYSTYRENE 3 MIL STANDARD SAMPLE Collection time: July 11, 2018

Wavenumbers (cm⁻¹)

IR proposals evaluation

First external users in November 2018

Country	Submitted	Selected
COLOMBIA	1	1
CYPRUS	2	2
EGYPT	4	2
FRANCE	1	1
IRAN, ISLAMIC REPUBLIC OF	3	1
ITALY	1	1
JORDAN	2	1
PAKISTAN	4	0
PALESTINE	1	0
TOTAL	19	9

"Monitoring Stress Hormone Response after Radiation Exposure: IR Microspectroscopic Approach"

Mariangela Cestelli Guidi & Roberto Amendola INFN/LNF and ENEA, Italy

Preliminary Results - Data Analysis in progress

Synchrotron-IR chemical map

<u>- Better Signal-to-noise ratio</u>
 <u>- Higher sensitivity in the lipid region</u>

"Can Alzheimer's Disease be treated?"

Gehan Ahmed & Safaa Khalil National Research Centre, Egypt

Beamtime: 14 shifts 11-15 November, 2018

Healthy brain

Preliminary Results - "deeper" Data Analysis is in progress

Membrane Lipids CH 2810-3020cm⁻¹

Phosphate and Nucleic Acids 900-1300cm⁻¹

PCA Analysis: Excellent separation of components

<u>The results significantly</u> <u>showed:</u>

- Very promising therapeutic effect on AD treatment
- Reducing/limiting the severe progression of AD-like in rat model.

A MANUSCRIPT TO BE SUBMITTE IN MAY 2019

"FTIR Microspectroscopy analysis on historical parchment manuscript"

Maedeh Darzi & Victoria Beltran Isfahan University of Technology, Iran, and SOLEIL Synchrotron, France

A MANUSCRIPT TO BE SUBMITTED BY JULY 2019

Proposal ID: 2010024 Beamtime: 8 shifts 11-13 December, 2018

NO SIGNAL!

HIGH S/N RATIO

Characterization of the ancient papers' material

Synchrotron IR Microspectroscopic analysis

The presence of the <u>proteins bands</u> imply that the protein was not only used as the binder for the pigments but also as a materials that was applied to the surface of the paper
Characterization of pigments: Golden regions

Presence of gypsum which could be used as a "filler" during the preparation process of the manuscripts

Characterization of pigments: Blue regions

Blue pigments could be identified as "ultramarine blue", with some indications of the presence of protein and silicate bands

^E *E Contentification, characterisation, and exploration of diagenesis of E ancient human bone from mortuary contexts in Eastern Mediterranean and the Near East*

> **Kirsi Lorentz and Simone Lemmers The Cyprus Institute, Cyprus**

Proposal IDs: 20160030 and 20160063 Beamtime: 14 shifts 16-20 December, 2018

• GLOBAR

• SR-IR

AR
GLOBAR

SESAME

Archaeological ancient human bone

A MANUSCRIPT IN PREPARATION

Data analysis in progress

Very low indication of occurring collagen bands

"Synchrotron IR Microspectroscopy: characterization of human monocytic cells stimulated by Syndecan-1 knockdown non-inflammatory and inflammatory breast cancer cell lines"

Hossam Taha & Noura El-Husseiny National Research Centre, Egypt

Proposal ID: 20160044 Beamtime: 12 shifts 23-27 December, 2018

A MANUSCRIPT IN PREPARATION

Raw data – data analysis is in progress

"IR Microspectroscopic Investigation of the Role of Placenta in the Pathogenesis of Preeclampsia"

Lina Dahabiya, Randa Mansour and Gihan Kamel University of Jordan and SESAME

-> promising results and can enhance the current understanding of the underlying biochemical mechanisms of pre-eclampsia disease.

"Developing novel polymeric materials for cultural heritage preservation protocols - ancient bones"

> Amr A. Abdelghany and Gihan Kamel National Research Centre, Egypt and SESAME

Research Collaboration Starting Date: October, 2018

ON GOING EXPERIMENTS

"Effect of sodium hypochlorite and non-setting calcium hydroxide on chemical structure of radicular dentin."

Hamza Saoud Jordan University of Science and Technology (JUST)

Collaboration on Globar

ON GOING EXPERIMENTS

Modern human tooth section

Proposals are evaluated by International experts:

Sofia Diaz-Moreno (DIAMOND, XAFS/XRF) Tom Ellis (Un. of Saskatchewan, IR) **Samar Hasnain (Un. of Liverpool, XAFS/XRF), Chair** Carol Hirschmugl (Un. of Wisconsin, IR) Bruce Ravel (NIST@NSLS-II, XAFS/XRF) Lisa Vaccari (Elettra, IR)

Second call for proposals Deadline Autumn 2018

Second call for proposals Deadline Autumn 2018

Affiliation Country	IR	XAFS/XRF	Total
CYPRUS	4	1	5
EGYPT	17	13	30
GERMANY	1	1	2
IRAN, ISLAMIC REPUBLIC OF	4	8	12
ISRAEL	0	4	4
ITALY	0	2	2
JORDAN	9	6	15
MEXICO	0	1	1
PAKISTAN	5	15	20
TURKEY	3	9	12
Total	43	60	<i>103</i>

Second call for proposals: Evaluations (11-3-2019)

Affiliation Country	IR: submitted	IR: selected
CYPRUS	4	3
EGYPT	17	8
GERMANY	1	1
IRAN, ISLAMIC REPUBLIC OF	4	3
JORDAN	9	5
PAKISTAN	5	0
TURKEY	3	2
Total	43	22

Second call for proposals: Evaluations (11-3-2019)

Affiliation Country	XAFS/XRF: submitted	XAFS/XRF: selected
CYPRUS	1	1
EGYPT	13	4
GERMANY	1	0
IRAN, ISLAMIC REPUBLIC OF	8	2
ISRAEL	4	3
ITALY	2	2
JORDAN	6	1
MEXICO	1	1
PAKISTAN	15	13
TURKEY	9	8
Total	60	35

Calendar of operations 2019

~	-	~		B. /			
5	E	5	А	IV		E	
	_	-		-	-		

					2	2019	SESAME	bea	am-time Sc	he	dule		_				-				
	January	February	March	April	May		June		July		August		September		October		November		December		
	date M L N	W date M L N W	date MILIN W	date M L N	W date M L N	W	date _M L N	W	date M L N	w	date M L N	W	date M L N	w	date _M L N	w	date _M L N	W	date _M L N	W	
S M T W T	1 2 3	1		1 2 3 4	13 1 2				1 2 3 4	20	5 1		1 2 3 4 5	35	1 2 3				1 2 3 4 5		S M T W T
F S	4 5	1 2	1 2	5 6	3 4		1		5 6		2 3		6 7		4 5		1 2		6 7		F S
S M T W T	6 7 8 9 10	3 4 2 5 6 7	3 4 6 5 1 6 7	7 8 0 9 10 11	5 6 14 7 8 9	18	2 3 4 5 6	22	7 8 9 10 11	21	4 5 6 7 8	31	8 9 10 11 12	36	6 7 8 9 10	40	3 4 5 6 7	44	8 9 10 11 12	48	S M T W T
F S	11 12	8 9	8 9	12 13	10 11		7 8		12 13		9 10		13 14		11 12		8 9		13 14		F S
S M T W T	13 14 15 16 17	10 11 3 12 13 14	10 11 7 12 1 13 14	14 15 1 16 17 18	12 13 15 14 15 16	19	9 10 11 12 13	23	14 15 16 17 18	28	11 12 13 14 15	32	15 16 17 18 19	37	13 14 15 16 17	41	10 11 12 13 14	45	15 16 17 18 19	49	S M T W T
F S	18 19	15 16	<mark>15</mark> 16	<mark>19</mark> 20	17 18		14 15		19 20		16 17		20 21		18 19		<mark>15</mark> 16		20 21		F S
S M T W T	20 21 22 23 24	17 18 4 19 8 20 21	17 18 8 19 1 20 21	21 22 2 23 24 25	19 20 16 21 22 23	20	16 17 18 19 20	24	21 22 23 24 25	2!	18 19 20 21 22	33	22 23 24 25 26	38	20 21 22 23 24	42	17 18 19 20 21	46	22 23 24 25 26	50	S M T N T
F S	25 26	22 23	22 23	26 27	24 25		21 22		26 27		23 24		27 28		25 26		22 23		27 28	Π	F S
S M T W T	27 28 29 30 31	24 25 5 26 27 28	24 25 9 26 1 27 28	28 29 3 30	26 27 17 28 29 30	21	23 24 25 26 27	25	28 29 30 31	3(25 26 27 28 29	34	29 30	39	27 28 29 30 31	43	24 25 26 27 28	47	29 30 31	51	S M T W T
F S			29 30		<mark>31</mark>		28 29				30 31						29 30				F S
S M			31				30														S M
W											•										
F	TOTAL SHIFTS	5			4056		Hours 4	6.6	% of the ye	ear	1										
S	Users shifts Users			378 shifts	3024 3024		Hours 7 Hours 1	74.6 00.(% of tota	nl rs											
	Accelerator Pl	iysics shifts		129 shifts	1032		Hours 2	25.4	% of tota	n/											
	Shutdown & h	qlidays///////		/581/shitts///	/////4648///		Hours ////	3A	% ,//,6 \$\$\$64.ye	àr,	3										
	TOTAL shifts a	and shutdown			8704		Hours														

Calendar of operations 2019

	_	~		-	-		
			~	-			
_		_					
		_					
						the second se	
			_				

						2	01	9 SESAME I	bea	m-time Scl	heo	dule										
	January	February	March	April		May		June		July		August		September		October		November		December		
	date M L N	W date M L N W	date M L N	W date M L	NW	date M L N	W	date _M L N	w	date _M L N	W	date _M L N	W	date _M L N	w	date _M L N	W	date _M L N	w	date _M L N	W	
S M T W T	1 2 3	1		1 2 3 4	1;	3 1 2				1 2 3 4	26	1		1 2 3 4 5	35	1 2 3				1 2 3 4 5		S M T W T
F S	4 5	1 2	1 2	5 6		3 4		1		5 6		2 3		6 7		4 5		1 2		6 7		F S
S M T W T	6 7 8 9 10	2 5 6 7	3 4 5 6 7	7 8 10 9 10 11	1.	5 6 4 7 8 9	18	2 3 4 5 6	22	7 8 9 10 11	27	4 5 6 7 8	31	8 9 10 11 12	36	6 7 8 9 10	40	3 4 5 6 7	44	8 9 10 11 12	48	S M T W T
F S	11 12	8 9	8 9	12 13		10 11		7 8		12 13		9 10		13 14		11 12		8 9		13 14		F S
S M T W T	13 14 15 16 17	10 11 3 12 7 13 14	10 11 7 12 13 14	14 15 11 16 17 18	1:	12 13 5 14 15 16	19	9 10 11 12 13	23	14 15 16 17 18	28	11 12 13 14 15	32	15 16 17 18 19	37	13 14 15 16 17	41	10 11 12 13 14	45	15 16 17 18 19	49	S M T W T
F S	18 19	<mark>15</mark> 16	<mark>15</mark> 16	<mark>19</mark> 20		17 18		14 15		19 20		16 17		20 21		18 19		<mark>15</mark> 16		20 21		F S
S M T W T	20 21 22 23 24	17 18 4 19 ε 20 21	17 18 3 19 20 21	21 22 12 23 24 25	1	19 20 5 21 22 23	20	16 17 18 19 20	24	21 22 23 24 25	29	18 19 20 21 22	33	22 23 24 25 26	38	20 21 22 23 24	42	17 18 19 20 21	46	22 23 24 25 26	50	S M T N T
F S	25 26	22 23	22 23	26 27		24 25		21 22		26 27		23 24		27 28		25 26		22 23		27 28		F S
S M T W T	27 28 29 30 31	24 25 5 26 27 28	24 25 26 27 28	28 29 13 30	1	26 27 28 29 30	21	23 24 25 26 27	25	28 29 30 31	30	25 26 27 28 29	34	29 30	39	27 28 29 30 31	43	24 25 26 27 28	47	29 30 31	51	S M T W T
F S			29 30			<mark>31</mark>		28 29				30 31						29 30				F S
S M T			31					30														S M
w T	TOTAL SHIFT	S			1	4056		Hours 4	16.6	% of the ve	ear											
F																						
S	Users shifts Users			378 shifts		3024 3024		Hours7Hours1	7 4.6 9 00.0	% of total % of user	l S											
	Accelerator P	hysics shifts		129 shifts		1032		Hours 2	25.4	% of tota	I											
	Shutdown &	10)(davs////////////////////////////////////	///////////////////////////////////////	//581/shifts	(///	////4648///	11	Hours ////	3A	///orthe/ve	áí/											

Hours

TOTAL shifts and shutdown 8704

Materials Science

➤Materials Science beamline aims:

Using X ray diffraction techniques for investigating materials' atomic structure

➤Beamline Layout

MS safety hutches after installation (February 2018)

SESAME - XAFS beamline SESAME - MS hutches after construction (Feb. 2018)

Materials Science Source Wiggler source installation (Jan. – Feb. 2019)

Motors have been replaced. Gap was calibrated. Installation & Alignment strategy identified

Materials Science Source Wiggler source installation (Jan. – Feb. 2019)

Overall W61 length (m)	Controlision Contr	
Wiggler gap (mm)	12	
Period length (mm)	60.5	
Number of periods	33	
Magnetic material	NdFe:B	
Pole material	CoFe	
Maximum field (T)	1.4	
Deviation parameter K	7.8	. Gap was calibrated.
Critical energy (keV)	5.8	strategy identified
Total power @ 400mA (KW)	6.01	

Wiggler flux

Courtesy of Mohammad AL-Najdawi

NEG coated Al vacuum chamber delivered. Up&down stream cambers delivered.

Some front-end components still missing (lack of funding): effect of wiggler on e⁻ beam to be tested with a provisional absorber.

Wiggler installation completed: first tests of its effects on e-beam in March 2019

Wiggler installation completed: tests started on March 17 2019.

Data show **no** detrimental effect on the electron beam

First X ray diffraction experiment using the Pilatus detector for MS beamline (test at the XAFS beamline)

Pilatus area detector (Donation by DECTRIS company)

Area	83.8 × 106.5 mm ²								
Pixel size	172 × 172 µm²								
Format	487 × 61	9 - 301,	453 pixels						
Dynamic range	20 bits (1	:1,048,5	76)						
Readout time	7 ms								
Framing rate	500 Hz								
Point-spread function	< 1 pixel	1							
Silicon sensor thickness	320 µm	450 µm	Π						
Quantum efficiency*	91 96	91 96	5.4 keV (Cr)						
	96 96	97 96	8.0 keV (Cu)						
	37 %	47 96	17.5 keV (Mo)						
	20.96	27 96	22.2 keV (Ag)						
Cooling	Closed circuit water-cooling unit for temperature stabilization (23*C)								
Power consumption	30 W								
Dimensions (WHD)	160 × 194 × 262 mm ³								
Weight (Detector Head)	7.5 kg								

First X ray diffraction experiment using the Pilatus detector for MS beamline (test at the XAFS beamline)

X Ray Diffraction of Silicon standard @ 10 keV

Diffractometer: donated by Diamond LS

MS BL completion: expected by the end of 2019

OPEN SESAME

Approved 3 year project, starting on January 1 2017

Participant No.	Participant organisation name	Country
1*	Installation Europeenne de Rayonnement Synchrotron (ESRF)	FR
2	Consorcio para la Construcción, Equipamiento y Explotación del Laboratorio de Luz Sincrotrón (CELLS)	ES
3	The Cyprus Institute (CYI)	CY
4	Deutsches Elektronen-Synchrotron (DESY)	DE
5	Sincrotrone Trieste (ELETTRA)	IT
6	Istituto Nazionale Fisica Nucleare (INFN)	IT
7	Instruct Academic Services Limited (Instruct)	UK
8#	Synchrotron-light for Experimental Science and Applications in the Middle East (SESAME)	JO
9	Société Civile Synchrotron Soleil (SOLEIL)	FR
10	European Organization for Nuclear Research (CERN)	СН
11	Centre National de la Recherche Scientifique (CNRS)	FR

OPEN SESAME

WP1: Management and dissemination coordination

WP2: SESAME staff training and exchange programme staff exchanges between SESAME and European labs

WP3: Building user capacity in the local science and technology landscape

bursaries for training of perspective users thematic schools

WP4: Integration of SESAME into public and social-economic landscapes

communication, industry involvement

WP3 "Building user capacity in the local science and technology landscape" SUMMARY

Task 3.1 consists of a set of <u>four thematic schools</u> on Cultural Heritage, Biological and Biomedical Applications, Structural Biology and Environmental Sciences targeting researchers from the Middle East on highly relevant research topics linked to the day one SESAME beamlines. Each one week school will host at least 20 funded participants

Task 3.2 targets young researches through organising

I. A tailored HERCULES School, building on the highly regarded HERCULES courses (<u>www.hercules-school.eu</u>) which have been run in Europe for 25 years as an introduction to large-scale facilities including light sources.
 II. Short term fellowship programme (two calls) which will permit at least 18 Masters and PhD students registered in SESAME Member higher education institutes to visit a European light sources (participant institutions) for 1-3 months on a specific research project.

2 Months is likely the optimum duration (trade-of between funding and profitability).

Task 3.3 targets the industrial usage of SESAME. It will build a contact list and network out to industry and applied-science researchers in the SESAME Members, including the organisation of a workshop on synchrotron light applications for industry.

Task 3.4 will create an on-line "training warehouse" where all the training materials generated by WP3 and other OPEN SESAME activities will be harvested and distributed

Task 3.1.4. Environmental sciences. **ELETTRA**.

Key dates:

I) Deadline for receiving applications: 15-02-2019; (at least 6 weeks).

II) 4 weeks for selecting the 20 funded students (fair distribution of gender and nationalities) but based on the CVs and motivation letters (related to the scope of the course). Funded students restricted to working/ enrolled in an institution of the 9 SESAME members. 15-03-2019

III) Two weeks for issuing invitation letters (from Host, in this case SESAME) \rightarrow 18-03-2017

IV) Two months (minimum) to get the visa (if applicable) \rightarrow Mid May-2019.

V) To arrange the travel details for the funded students (at least 2/3 weeks)

Date and place of the school: 23-27 June-2019 @ SESAME

→Information to be spread by: I) SESAME channels (1: Users Committee members; 2: Council delegates via the Council Secretary; 3: Users mailing list (Registered SESAME Users, portal (greta.facile@sesame.org.jo); II) ELETTRA contacts (andrea.lausi@elettra.eu, andrea.goldoni@elettra.eu, cecilia.blasetti@elettra.eu); III) etc.

→ Lecturers (5 funded lecturers, 1 likely from SESAME). Additional 'local' lecturers are expected/encouraged but they can not be funded.

→ Students (20 fully funded students). Additional 'local' attendees are expected but they can not be funded (perhaps lunches...). xx applicants. xx selected (& funded)

Course information: http://www.elettra.eu/Conferences/2019/ESTSchool/Main/HomePage

Program: Final version: Mid February-2019. Information launched (program completed). Key dates:

I) Deadline for receiving applications: 04-06-2019; (at least 6 weeks).

II) 4 weeks for selecting the 20 funded students (fair distribution of gender and nationalities) but based on the CVs and motivation letters (related to the scope of the course). 10-07-2019 III) Two weeks for issuing invitation letters (from Host, in this case SESAME) \rightarrow 26-07-2017 IV) Two months (minimum) to get the visa (if applicable) \rightarrow Early October-2019. V) To arrange the travel details for the funded students (at least 3/4 weeks)

Date and place of the school: Saturday-26th of October to Friday-8th of November - 2019 @ Amman – SESAME (likely close to SESAME users meeting)

→Information to be spread by: I) SESAME channels (1: Users Committee members; 2: Council delegates via the Council Secretary; 3: Users mailing list (Registered SESAME Users, portal (greta.facile@sesame.org.jo); II) ESRF/ HERCULES contacts (vincent.favre-nicolin@esrf.fr, krisch@esrf.fr, vincent.favre-nicolin@esrf.fr); III) etc.

 \rightarrow Lecturers (5-8 funded lecturers from abroad plus several from SESAME).

→ Students (20 fully funded students). Additional 'local' attendees are expected but they can not be funded (perhaps lunches...). xx applicants. xx selected (& funded)

12 of 43 submitted IR proposals are from newcomers who participated to the OPEN SESAME schools(Call 2018)

Open call H2020-INFRASUPP-2018-2020 (Deadline 20 March 2018)

Support the development and installation of a dedicated beam-line in SESAME. The proposal should help strengthening the links to the European network of analytical facilities with particular reference to new synchrotrons currently under development. The consortium will work with the SESAME Scientific Advisory Committee to define the scope of the beam-line more appropriate for the scientific community of reference. It should involve European partner laboratories having similar energy and technical specifications in the design and development of the beam-line components and the related instrumentation. The action will cover the installation of the beam-line and its initial commissioning. The action should also address how SESAME will secure the necessary human and financial resources for the operation of the beam-line.

Expected budget 6 M€

BEATS

5	BEATS (BEAmline for Tomography at SESAME)	~4.5 - ~30 keV	Super Bend or Three pole wavelength shifter	 EU funded (~6 M€ total, ~3.6M€ for SESAME)
---	--	-------------------	--	--

Horizon 2020

Call: H2020-INFRASUPP-2018-2020 (Support to policy and international cooperation)

Topic: INFRASUPP-01-2018-2019 Type of action: RIA

Proposal number: SEP-210496061 Proposal acronym: BEATS

Deadline Id: H2020-INFRASUPP-2018-1

BEATS: Abstract

The overall objective of the project Beamline for Tomography at SESAME (BEATS) is to pave the way for an efficient and sustainable operation of the Synchrotron light for Experimental Science and Applications in the Middle East (SESAME) research infrastructure. The project builds upon the OPEN SESAME project, and has the following key objectives:

- Develop and consolidate the scientific case and build up a science community, paying particular attention to the R&D and technology needs of the SESAME Members and beyond. Today, there is already significant interest from the Cultural Heritage and Archaeology community. Applications in Environmental and Materials Sciences, with links to industries in the region, shall also be explored;
- Design, procure, construct, and commission a beam line for hard X-ray full-field tomography at SESAME;
- Foster collaborations among the project partners in all aspects of the technical work to ensure that a comprehensive transfer of knowledge to SESAME staff is accomplished within the lifetime of the project;
- Address the issue of sustainability of operation by preparing medium- to long-term funding scenarios for the tomography beamline and the facility.

In this context, the participation of CELLS and SOLARIS, which both operate storage rings of energy similar to that of SESAME, is of particular value as both research infrastructures plan the construction of a hard X-ray imaging beam line mainly focused on computed micro-tomography. They will therefore directly profit from the common technical developments. The consortium is a blend of leading research facilities in the Middle East (SESAME and the Cyprus Institute), well established European synchrotron radiation facilities and high-energy laboratories (DESY, ELETTRA, ESRF, INFN and PSI) with a decades-long experience in synchrotron radiation research and technology, and more recently founded synchrotron laboratories (ALBA and SOLARIS)

BEATS: partnership

Participa	Darticinant organization name	Country	
nt No.	Participant organisation name	Country	
1	EUROPEAN SYNCHROTRON RADIATION FACILITY	FR	
С	SYNCHROTRON-LIGHT FOR EXPERIMENTAL SCIENCE AND	JO	
Z	APPLICATIONS IN THE MIDDLE EAST		
3	THE CYPRUS INSTITUTE	CY	
4	UNIWERSYTET JAGIELLONSKI	PL	
F	CONSORCIO PARA LA CONSTRUCCION EQUIPAMIENTO Y	ГС	
5	EXPLOTACION DEL LABORATORIO DE LUZ SINCROTRON	ES	
6	PAUL SCHERRER INSTITUT	СН	
7	STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY	DE	
8	ELETTRA - SINCROTRONE TRIESTE SCPA	IT	
9	ISTITUTO NAZIONALE DI FISICA NUCLEARE	IT	
8 9	ISTITUTO NAZIONALE DI FISICA NUCLEARE	II IT	

BEATS main design characteristics

- Based on TOMCAT (SLS)
- Avoid if possible the use of SLS type superbending (expensive and intrusive)
- Simplify the monochromator design (DMM only, no DCM option)
- Make maximum use of the available space (put as many components as possible in the SR tunnel)

BEATS preliminary studies for the source

Increase the critical energy (now at 6.04 keV – 1.45 T – 2.5 GeV)

Status: WP3 source: led by INFN + ALBA + SESAME

decision on source type by April 19 impact on optics of 3PW acceptable comparison of superbend – 3PW

Source magnetic and mechanical design with ALBA (J. Campmany)

BEATS preliminary studies for the source

Increase the critical energy (now at 6.04 keV – 1.45 T – 2.5 GeV)

- Status:
- WP3 source:
- led by INFN + ALBA + SESAME
- 3PW (Courtesy of Josep Campmany)

- ---- 5wp

BEATS preliminary studies for the source

Increase the critical energy (now at 6.04 keV – 1.45 T – 2.5 GeV)

```
Status:
WP3 source:
led by INFN + ALBA + SESAME
3PW (Courtesy of Josep Campmany)
```


Provides the Region with a unique research infrastructure

Fosters basic and applied science

Contributes to international research in the Region.

Provides the Region with a unique research infrastructure

Fosters basic and applied science

Contributes to international research in the Region.

With good and improving accelerator performances, TWO beamlines accepting users, and more beamlines to come SESAME is not a promise anymore: it is REALITY.